What is Grid Computing

Grid computing (or the use of computational grids) is the combination of computer resources from multiple administrative domains applied to a common task, usually to a scientific, technical or business problem that requires a great number of computer processing cycles or the need to process large amounts of data.

One of the main strategies of grid computing is using software to divide and apportion pieces of a program among several computers, sometimes up to many thousands. Grid computing is distributed, large-scale cluster computing, as well as a form of network-distributed parallel processing [1]. The size of grid computing may vary from being small — confined to a network of computer workstations within a corporation, for example — to being large, public collaboration across many companies and networks. "The notion of a confined grid may also be known as an intra-nodes cooperation whilst the notion of a larger, wider grid may thus refer to an inter-nodes cooperation".[2] This inter-/intra-nodes cooperation "across cyber-based collaborative organizations are also known as Virtual Organizations".[3]

It is a form of distributed computing whereby a “super and virtual computer” is composed of a cluster of networked loosely coupled computers acting in concert to perform very large tasks. This technology has been applied to computationally intensive scientific, mathematical, and academic problems through volunteer computing, and it is used in commercial enterprises for such diverse applications as drug discovery, economic forecasting, seismic analysis, and back-office data processing in support of e-commerce and Web services.

What distinguishes grid computing from conventional cluster computing systems is that grids tend to be more loosely coupled, heterogeneous, and geographically dispersed. Also, while a computing grid may be dedicated to a specialized application, it is often constructed with the aid of general-purpose grid software libraries and middleware.

0 comments: